

September 6-10, 2021 | 100% virtual

The 23rd European Conference on Power Electronics and Applications

http://www.epe2021.com

Synchronous Reference Frame current control of Aalborg-type PV inverters

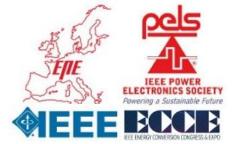
Georgios Orfanoudakis

Hellenic Mediterranean University, Greece gorfas@hmu.gr

Georgios Foteinopoulos

Technical University of Crete, Greece georgefwt@gmail.com

Eftychios Koutroulis


Technical University of Crete, Greece efkout@electronics.tuc.gr

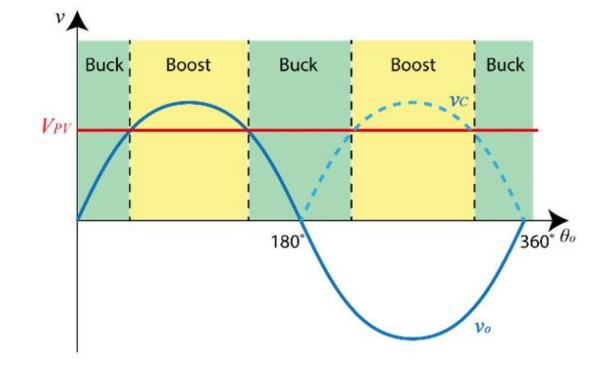
Weimin Wu

Shanghai Maritime University, China wmwu@shmtu.edu.cn

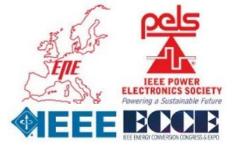
Presentation outline

- 1. Introduction
- 2. Background
- 3. Contribution
- 4. Proposed approach
- 5. Simulation results

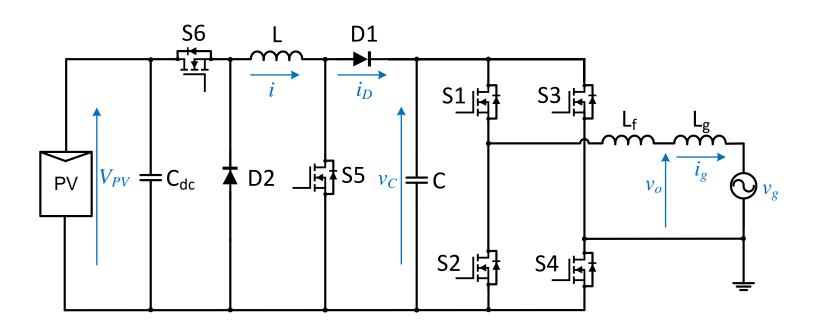
Transformerless PV inverters with voltage step-up


- Transformerless photovoltaic (PV) inverters
 - High efficiency (H5, HERIC, NPC, ...)
- Normally combined with a voltage step-up (Boost) stage
 - ensures that the DC-link voltage is adequate to inject power to the grid
 - performs Maximum Power Point Tracking (MPPT) of the PV source
- Step-up stage traditionally separate from the inverter stage
- Topologies that combine them have appeared in recent years

Dual-mode time-sharing topologies



- Operate in Buck or Boost mode for portions of each half-cycle.
- In Full-bridge versions, the DClink voltage waveform has the form of a rectified sine-wave.
- An H-bridge simply "unfolds" it to supply it to the grid.



Full-bridge Aalborg inverter

- Elimination of one inductor, as compared to other topologies of the same family
- Operation of only one power switch at high frequency
 - S6 for Buck mode
 - S5 for Boost mode
- Offers high efficiency

Characteristics of existing control approaches

- The control variable is the Buck/Boost inductor current, instead of the grid current, due to the difficulty of controlling the latter in Boost mode.
- The Buck and Boost stages are controlled independently; different controllers are used for the Buck and Boost modes of operation.
 - Transitions cause oscillations on the output current waveform
- The PI current controllers operate in the stationary reference frame.
 - Introduction of phase shift (lag) Need for high gains
- The reference current for the Buck PI controller is sinusoidal, while for the Boost PI controller it follows a $sin^2(\omega t)$ form.
 - Greater phase shift at double frequency

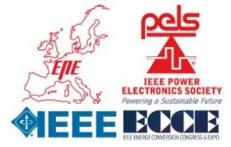
Significant grid current distortion

This paper: New current control approach

- Operates in the Synchronous Reference Frame (SRF)
 - known to avoid the aforementioned problems with respect to delays
- Uses a common controller for Buck and Boost operation
 - minimizes the effects of the transitions between the two modes.
- Achieves high output current quality even at unfavourable conditions
 - low PV voltage
 - low power
- Comparative simulation results in MATLAB-Simulink are presented
- Total Harmonic Distortion (THD) of the grid current is reduced by two to three times as compared to the existing alternative

Fundamentals of the proposed approach

- SRF controller
 - Operating based on a classical DQ structure.
 - Phase-Locked Loop (PLL) providing the angle of the measured output voltage, which is used for the Park transformations.
- The controlled current is the inductor L current, *i*.
- Converted to a respective alternating current, i_{ac} , by multiplying it by the sign of the output voltage.
- An All-Pass Filter (APF) generates the quadrature component of i_{ac} , to be used as feedback for the Q current controller.

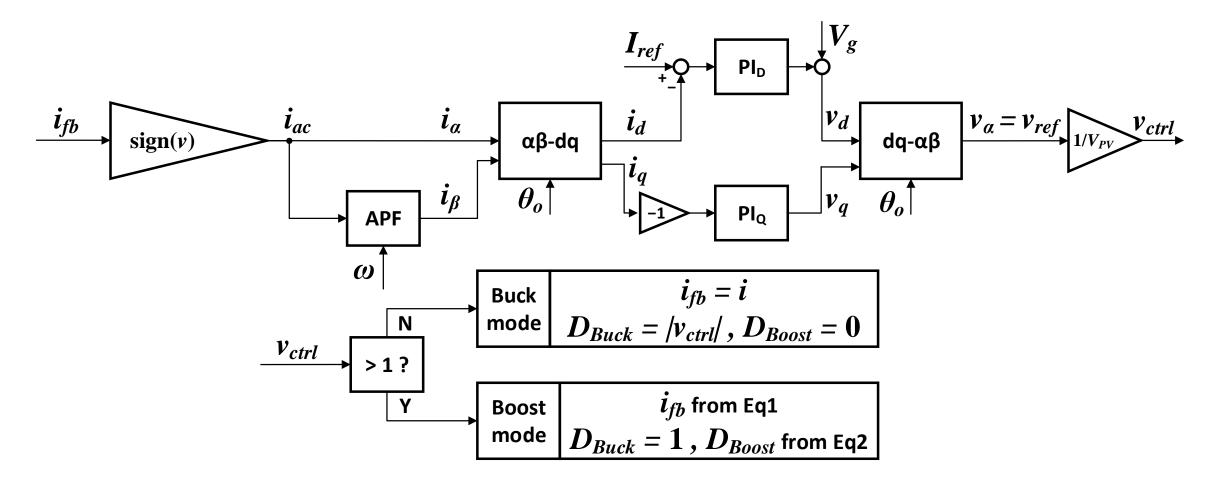

Transition between the Buck and Boost modes

- Controller is common for the Buck and Boost modes of operation.
- Generates a single voltage control waveform, which is used to modulate the switches corresponding to both modes.
- The control waveform is sinusoidal, but its amplitude can exceed the value of 1 without causing the undesirable effects of over-modulation.
- Instead, for the time intervals that v_{ctrl} exceeds the value of 1, the Boost mode is enabled.
- The feedback current is adjusted so that the DQ current controllers are not affected by the transition between the Buck and Boost modes of operation.

Boost mode

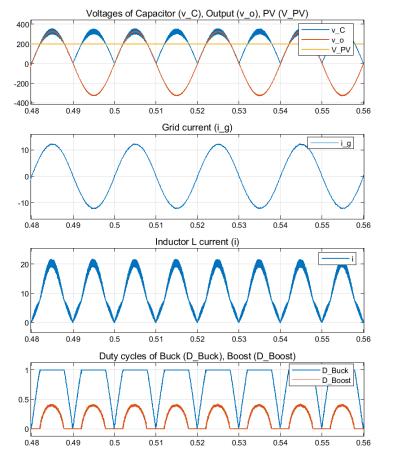
- The inductor current *i* exhibits a $sin^2\vartheta$ form.
- The DQ current controllers must still act on approx. constant feedback currents, thus the input to the $\alpha\beta$ -dq transformation must be sinusoidal.
- In order to achieve that, the measured current *i* is multiplied by an appropriate quantity before being converted to *i_{ac}* and passed to the APF:

$$i_{fb} = i \cdot \frac{E - L \cdot \frac{V_o}{E} \cdot I_{ref} \cdot \omega \cdot \sin 2\theta_o}{|v_o + \omega \cdot L_f \cdot I_{ref} \cdot \cos \theta_o|} \quad (Eq1)$$

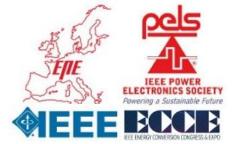

• Duty cycle *D* for the Boost converter:

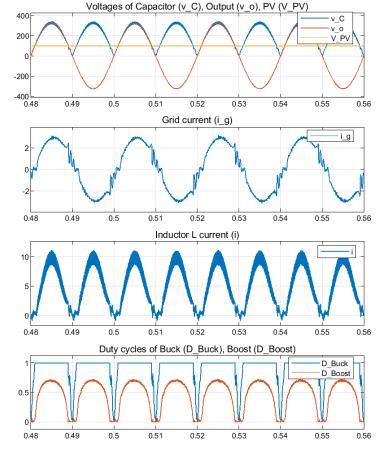
$$D = 1 - \frac{E - L \cdot \frac{V_o}{E} \cdot I_{ref} \cdot \omega \cdot \sin 2\theta_o}{|v_{ref} - \omega \cdot L \cdot I_{ref} \cdot \cos \theta_o|}$$
(Eq2)

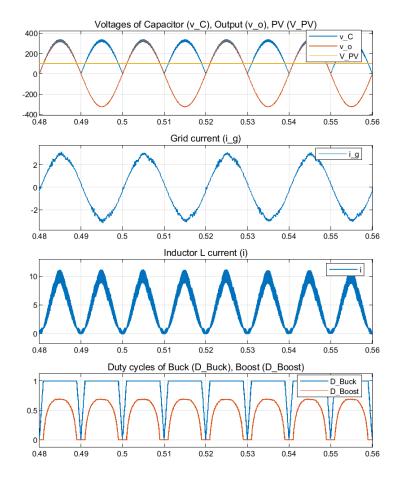
Block diagram of the proposed approach



Simulation results Nominal PV voltage & power


- *V_{PV}* = 200 V
- *P* = 2 kW
- Effects:
 - Phase lag due to stationary frame current control
 - Current oscillations at the transition between Buck-Boost modes
- THD₁ =
 - Existing: 4.1%
 - Proposed: 1.3%
- THD reduction: 68%





Simulation results Low PV voltage & power


- *V_{PV}* = 100 V
- *P* = 500 W
- Effects are more intense
- THD₁ =
 - Existing: 12.5%
 - Proposed: 4.6%
- THD reduction: 63%

Conclusion

- A new current control strategy for Aalborg-type dual-mode timesharing PV inverters has been proposed.
- The proposed strategy
 - operates in the synchronous reference frame, and
 - uses a common controller for the Buck and Boost modes
- Suppresses the different types of distortion that appear when the inverter is controlled with existing stationary-frame control methods.
- Significantly improves the quality of the inverter output current, as illustrated for a wide range of operating conditions.

Acknowledgement

This work was performed within the framework of the project "eSOLAR: Principle and control of high-efficiency Buck-Boost type Photovoltaic inverter" of the program "Bilateral and Multilateral Research & Technology Co-operation between Greece and China", funded by the Operational Program "Competitiveness, Entrepreneurship and Innovation 2014-2020" (co-funded by the European Regional Development Fund) and managed by the General Secretariat of Research and Technology, Ministry of Education, Research, and Religious Affairs under the project eSOLAR/T7∆KI-00066.

Synchronous Reference Frame current control of Aalborg-type PV inverters

THANK YOU!

Georgios Orfanoudakis

Hellenic Mediterranean University, Greece

Georgios Foteinopoulos

Technical University of Crete, Greece

Eftychios Koutroulis

Technical University of Crete, Greece

Weimin Wu

Shanghai Maritime University, China