EPE 22 September 5-9, 2022 Hannover, Germany

Evaluation of common-mode leakage current of Aalborg-type transformerless PV inverters

Georgios Orfanoudakis

Georgios Foteinopoulos

Eftychios Koutroulis

EEE

Technical University of Crete, Greece

Weimin Wu

Shanghai Maritime University, China

Evaluation of common-mode leakage current of Aalborg-type transformerless PV inverters

- 1. Introduction to Aalborg-type transformerless PV inverters
- 2. Background on common-mode (CM) leakage current generation
- 3. Mechanism and expressions for CM current in the Aalborg inverter
- 4. Proposed filter modification
- 5. Simulation results
- 6. Comparison and Discussion

Transformerless PV inverters with voltage step-up

- Transformerless photovoltaic (PV) inverters
 - High efficiency (H5, HERIC, NPC, ...)
 - Lower volume, weight, cost
- Normally combined with a voltage step-up (Boost) stage
 - Ensures that the DC-link voltage is adequate to inject power to the grid
 - Performs Maximum Power Point Tracking (MPPT)
- Step-up stage traditionally separate from the inverter stage
- Topologies that combine them **dual-mode time-sharing** topologies
- Different DC-link voltage waveforms rectified sine wave

Dual-mode time-sharing topologies

- Operate in Buck or Boost mode for portions of each half-cycle
- In full-bridge versions, the DClink voltage waveform has the form of a rectified sine wave
- An H-bridge "unfolds" it to supply it to the grid
- PF ≈ 1

Fig. 1: Waveforms and modes of operation of full-bridge dual mode time-sharing inverters.

Full-bridge Aalborg inverter

- Elimination of one inductor, as compared to other topologies of the same family
- Operation of only one power switch at high frequency
 - S6 for Buck mode
 - S5 for Boost mode

Common-mode leakage current generation

6

- Inverter PWM operation
- Parasitic capacitances between the solar cells and the ground
- Grounded neutral of the grid
- Not systematically analysed for topologies with rectified sine wave DC-link voltage

Contribution

- 1. CM leakage current generation mechanism for the Aalborg inverter
- 2. Output filter **modification** for the reduction of CM leakage current
- Equivalent circuits and analytical expressions for the RMS value of the CM currents
- 4. Effect of inverter **operating conditions**
- 5. Effect of **filter parameters**

• CM voltage:

$$v_{cm} = \frac{v_A + v_B}{2}$$

- Fast variation of v_{cm} gives rise to CM current
- H-bridge (S1 to S4) switches at the grid frequency

$$v_{cm} = \frac{v_{Cf}}{2}$$

- Rectified sine wave Not pulsating Low CM current expected
- But v_{Cf} contains different types of distortion
- Will be discussed for Buck / Boost mode

Distortions on the CM voltage waveform Buck mode

- I. Voltage ripple:
 - LC filter capacitor for the Buck converter
 - \approx 1% of the peak grid voltage
- II. Distortion at zero-crossings:
 - Operation only with PF = 1
 - Phase lag introduced to the output current by the filter inductors
 - C_f voltage does not exactly follow a rectified sine wave in the area of zero crossings of the grid voltage
 - Fast voltage transients appear because the capacitor current changes direction before the capacitor voltage reaches zero

Distortions on the CM voltage waveform Boost mode

III. Increased voltage ripple:

- Output capacitor for the Boost converter
- \approx 15% of the peak grid voltage
- IV. Distortion at the transitions between the two modes:
 - Characteristics depend on the inverter control strategy and method applied to ensure a smooth transition
 - Not appearing with control method proposed in previous work

ECCE **ØIEEE**

Equivalent circuits for CM current generation

Fig. 4: Equivalent circuits for CM current generation.

Equations for CM current RMS value

 v_r

State S1–S4 (positive half-cycle)

 $I_{cm,r,RMS,1-4}=0,$

State S2–S3 (negative half-cycle)

$$I_{cm,r,RMS,2-3} = V_{r,RMS} / \sqrt{R_{ground}^2 + 1/(\omega_s C_{par})^2}$$

Total

$$I_{cm,r,RMS} = V_{r,RMS} / \sqrt{2 \left[R_{ground}^2 + 1 / \left(\omega_s C_{par} \right)^2 \right]}$$

B) Due to fundamental-frequency ripple on V_{Cf} ($V_{q,RMS}$) $I_{cm,f,RMS} \approx V_{g,RMS} \omega_g C_{par} / \sqrt{2}$

Proposed output filter modification

- Output filter inductor (L_f) split to two
- Suppresses the CM currents peaks at the zero-crossings of the grid voltage
- Neutral of the grid no longer connected to the negative DC-link terminal during state S1-S4
- CM current flows during both grid voltage half-cycles

Fig. 5: Full-bridge Aalborg inverter topology with modified output filter.

Equivalent circuit for CM current generation

- Equivalent circuit of Fig. 6 holds for both inverter states
- Same values of $V_{r,RMS}$ and $V_{g,RMS}$ as before
- CM current RMS value due to switching-frequency ripple $I'_{cm,r,RMS} = V_{r,RMS} \cdot 2\omega_s C_{par}/|4 - \omega_s^2 L_f C_{par}|$
- Resonance at

• Ratio and minimum $\mathbf{L}_{\!f}$ for CM current reduction

Fig. 6: Equivalent circuit for CM current generation with modified filter.

 CM current flows only during the negative half-cycles

• Buck only / Buck-Boost mode

- High peak values of CM current at the zero crossings of the grid voltage
- RMS values:

ECOP *♦IEEE*

- 38mA for the Buck only mode
- 218mA for the Buck-Boost mode, due to higher voltage ripple
- Peak values: 0.5 2A

Simulation results – Original filter

200

2

E

150

€^{100↓}

Voltages of Capacitor (v C), Output (v o), PV (V PV)

Grid current (i g)

Common-mode voltage (v_cm)

vС

v_o

V_PV

Σ

Æ

€^{100⊦}

50

-200

044

218mA

049

15

0.5

Simulation results – Modified filter

Voltages of Capacitor (v C), Output (v o), PV (V PV)

Voltages of Capacitor (v C), Output (v o), PV (V PV)

- CM current flows during both half-cycles
- Low peak values of CM current at the zero crossings
- RMS values:
 - 27mA for the Buck only mode
 - 129mA for the Buck-Boost mode
- Ratio (vs original filter): 0.62

 $\frac{I'_{cm,r,RMS}}{I_{cm,r,RMS}} = \frac{2\sqrt{2}}{1}$

0.49

0.48

0.5

0.41

042

043

044

045

046

047

0.45

0.46

0.47

0.44

0.43

0.4

0.41

0.48

0.49

Ratio for different operating conditions

- Same values of ω_s , L_f , C_{par}
- PV voltage:
 - 200V Buck-Boost mode
 - 400V Buck only mode
- PV power: 250 2000W
- Within -5/+8% of 0.62
- HERIC inverter with boost stage and LCL filter generates approximately 100mA

Table I: CM current RMS value ratio for the original and modified filter, under different operating conditions.

PV voltage [V]	PV power [W]	Original [mA]	Modified [mA]	Ratio
200	2000	247.8	142.6	0.58
	1000	124.6	71.3	0.57
	500	64.2	37.7	0.59
	250	36.7	21.8	0.60
400	2000	37.7	22.9	0.61
	1000	35.6	22.9	0.64
	500	34.6	22.9	0.66
	250	34.6	22.9	0.66

≈ 0.62

Ratio for different filter parameters

- CM current is inversely proportional to L_{dc} and C_{f}
- L_f from $L_{f,min}$ to $2L_{f,min}$
- PV voltage: 200V / 400V
- PV power: 2000W
- Ratio for $2L_{f,min}$: 0.3

Fig. 7: CM current RMS value ratio for different values of L_f .

Comparison of alternatives for reducing the CM current

- Increasing C_f
 - grid current distortion at the zero-crossings
 - imposes a limit on the size of C_f
- Increasing L_{dc}
 - rated at higher current $(2 3 \times)$ than L_f
 - lower effect on CM current
 - subject to higher copper and core losses
 - wound on a low-loss (e.g. ferrite) core
- Given the switching frequency and the value of C_f , increment of L_f is preferable
- Requires approximate knowledge of C_{par}

Fig. 8: Full-bridge Aalborg inverter topology with modified output filter, highlighting the components considered for CM current reduction.

Conclusion

- CM leakage current generation mechanism analytical expressions
- Output filter modification for up to 70% reduction of CM current
- Investigation under different operating conditions
- Effect of LCL filter parameters
- Applicable to other topologies with rectified sine wave DC-link voltage (!)

Acknowledgement

This work was performed within the framework of the project

"eSOLAR: Principle and control of high-efficiency Buck-Boost type Photovoltaic inverter"

of the program "Bilateral and Multilateral Research & Technology Cooperation between Greece and China", funded by the Operational Program "Competitiveness, Entrepreneurship and Innovation 2014-2020" (co-funded by the European Regional Development Fund) and managed by the General Secretariat of Research and Technology, Ministry of Education, Research, and Religious Affairs under the project eSOLAR/T7ΔKI-00066.

∲IEEE[

SEPTE

PL Status and New Decrease

EPE'22 - Evaluation of common-mode leakage current of Aalborg-type transformerless PV inverters